Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Angew Chem Int Ed Engl ; 62(28): e202305564, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162307

RESUMO

Indocyanine green (ICG) is the only near-infrared (NIR) dye approved for clinical use. Despite its versatility in photonic applications and potential for photothermal therapy, its photobleaching hinders its application. Here we discovered a nanostructure of dimeric ICG (Nano-dICG) generated by using ICG to stabilize nanoemulsions, after which ICG enabled complete dimerization on the nanoemulsion shell, followed by J-aggregation of ICG-dimer, resulting in a narrow, red-shifted (780 nm→894 nm) and intense (≈2-fold) absorbance. Compared to ICG, Nano-dICG demonstrated superior photothermal conversion (2-fold higher), significantly reduced photodegradation (-9.6 % vs. -46.3 %), and undiminished photothermal effect (7 vs. 2 cycles) under repeated irradiations, in addition to excellent colloidal and structural stabilities. Following intravenous injection, Nano-dICG enabled real-time tracking of its delivery to mouse tumors within 24 h by photoacoustic imaging at NIR wavelength (890 nm) distinct from the endogenous signal to guide effective photothermal therapy. The unprecedented finding of nanostructure-driven ICG dimerization leads to an ultra-stable phototheranostic platform.


Assuntos
Nanopartículas , Nanoestruturas , Camundongos , Animais , Verde de Indocianina/química , Dimerização , Nanopartículas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Polímeros , Fototerapia/métodos , Linhagem Celular Tumoral
2.
Angew Chem Int Ed Engl ; 62(16): e202218218, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36811315

RESUMO

Nanoparticles' uptake by cancer cells upon reaching the tumor microenvironment is often the rate-limiting step in cancer nanomedicine. Herein, we report that the inclusion of aminopolycarboxylic acid conjugated lipids, such as EDTA- or DTPA-hexadecylamide lipids in liposome-like porphyrin nanoparticles (PS) enhanced their intracellular uptake by 25-fold, which was attributed to these lipids' ability to fluidize the cell membrane in a detergent-like manner rather than by metal chelation of EDTA or DTPA. EDTA-lipid-incorporated-PS (ePS) take advantage of its unique active uptake mechanism to achieve >95 % photodynamic therapy (PDT) cell killing compared to <5 % cell killing by PS. In multiple tumor models, ePS demonstrated fast fluorescence-enabled tumor delineation within minutes post-injection and increased PDT potency (100 % survival rate) compared to PS (60 %). This study offers a new nanoparticle cellular uptake strategy to overcome challenges associated with conventional drug delivery.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Lipossomos , Ácido Edético , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Lipídeos , Ácido Pentético , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Nanobiotechnology ; 19(1): 154, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034749

RESUMO

BACKGROUND: Porphyrin-lipids are versatile building blocks that enable cancer theranostics and have been applied to create several multimodal nanoparticle platforms, including liposome-like porphysome (aqueous-core), porphyrin nanodroplet (liquefied gas-core), and ultrasmall porphyrin lipoproteins. Here, we used porphyrin-lipid to stabilize the water/oil interface to create porphyrin-lipid nanoemulsions with paclitaxel loaded in the oil core (PLNE-PTX), facilitating combination photodynamic therapy (PDT) and chemotherapy in one platform. RESULTS: PTX (3.1 wt%) and porphyrin (18.3 wt%) were loaded efficiently into PLNE-PTX, forming spherical core-shell nanoemulsions with a diameter of 120 nm. PLNE-PTX demonstrated stability in systemic delivery, resulting in high tumor accumulation (~ 5.4 ID %/g) in KB-tumor bearing mice. PLNE-PTX combination therapy inhibited tumor growth (78%) in an additive manner, compared with monotherapy PDT (44%) or chemotherapy (46%) 16 days post-treatment. Furthermore, a fourfold reduced PTX dose (1.8 mg PTX/kg) in PLNE-PTX combination therapy platform demonstrated superior therapeutic efficacy to Taxol at a dose of 7.2 mg PTX/kg, which can reduce side effects. Moreover, the intrinsic fluorescence of PLNE-PTX enabled real-time tracking of nanoparticles to the tumor, which can help inform treatment planning. CONCLUSION: PLNE-PTX combining PDT and chemotherapy in a single platform enables superior anti-tumor effects and holds potential to reduce side effects associated with monotherapy chemotherapy. The inherent imaging modality of PLNE-PTX enables real-time tracking and permits spatial and temporal regulation to improve cancer treatment.


Assuntos
Tratamento Farmacológico/métodos , Emulsões/química , Lipídeos/química , Paclitaxel/química , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Lipossomos , Camundongos , Nanopartículas/uso terapêutico , Paclitaxel/administração & dosagem , Polietilenoglicóis , Usos Terapêuticos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Angew Chem Int Ed Engl ; 58(42): 14974-14978, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31410962

RESUMO

A nanoemulsion with a porphyrin shell (NewPS) was created by the self-assembly of porphyrin salt around an oil core. The NewPS system has excellent colloidal stability, is amenable to different porphyrin salts and oils, and is capable of co-loading with chemotherapeutics. The porphyrin salt shell enables porphyrin-dependent optical tunability. The NewPS consisting of pyropheophorbide a mono-salt has a porphyrin shell of ordered J-aggregates, which produced a narrow, red-shifted Q-band with increased absorbance. Upon nanostructure dissociation, the fluorescence and photodynamic reactivity of the porphyrin monomers are restored. The spectrally distinct photoacoustic imaging (at 715 nm by intact NewPS) and fluorescence increase (at 671 nm by disrupted NewPS) allow the monitoring of NewPS accumulation and disruption in mice bearing KB tumors to guide effective photodynamic therapy. Substituting the oil core with Lipiodol affords additional CT contrast, whereas loading paclitaxel into NewPS facilitates drug delivery.


Assuntos
Portadores de Fármacos/química , Óleo Etiodado/química , Nanopartículas/química , Neoplasias , Paclitaxel/administração & dosagem , Técnicas Fotoacústicas/métodos , Porfirinas/química , Nanomedicina Teranóstica/métodos , Animais , Clorofila/análogos & derivados , Clorofila/química , Emulsões , Humanos , Células KB , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Radiat Oncol Biol Phys ; 97(1): 184-194, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816364

RESUMO

PURPOSE: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. METHODS AND MATERIALS: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. RESULTS: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. CONCLUSIONS: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.


Assuntos
Permeabilidade Capilar/efeitos da radiação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/radioterapia , Microambiente Tumoral/efeitos da radiação , Animais , Adesão Celular/efeitos da radiação , Hipóxia Celular , Endotélio Vascular , Feminino , Xenoenxertos , Membro Posterior , Leucócitos/efeitos da radiação , Camundongos Endogâmicos NOD , Microscopia de Fluorescência , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Adesividade Plaquetária/efeitos da radiação , Dosagem Radioterapêutica , Fatores de Tempo , Carga Tumoral , Ultrassonografia
6.
Front Oncol ; 6: 221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818949

RESUMO

PURPOSE: Most effective antitumor therapies induce tumor cell death. Non-invasive, rapid and accurate quantitative imaging of cell death is essential for monitoring early response to antitumor therapies. To facilitate this, we previously developed a biocompatible necrosis-avid near-infrared fluorescence (NIRF) imaging probe, HQ4, which was radiolabeled with 111Indium-chloride (111In-Cl3) via the chelate diethylene triamine pentaacetic acid (DTPA), to enable clinical translation. The aim of the present study was to evaluate the application of HQ4-DTPA for monitoring tumor cell death induced by radiation therapy. Apart from its NIRF and radioactive properties, HQ4-DTPA was also tested as a photoacoustic imaging probe to evaluate its performance as a multimodal contrast agent for superficial and deep tissue imaging. MATERIALS AND METHODS: Radiation-induced tumor cell death was examined in a xenograft mouse model of human breast cancer (MCF-7). Tumors were irradiated with three fractions of 9 Gy each. HQ4-DTPA was injected intravenously after the last irradiation, NIRF and photoacoustic imaging of the tumors were performed at 12, 20, and 40 h after injection. Changes in probe accumulation in the tumors were measured in vivo, and ex vivo histological analysis of excised tumors was performed at experimental endpoints. In addition, biodistribution of radiolabeled [111In]DTPA-HQ4 was assessed using hybrid single-photon emission computed tomography-computed tomography (SPECT-CT) at the same time points. RESULTS: In vivo NIRF imaging demonstrated a significant difference in probe accumulation between control and irradiated tumors at all time points after injection. A similar trend was observed using in vivo photoacoustic imaging, which was validated by ex vivo tissue fluorescence and photoacoustic imaging. Serial quantitative radioactivity measurements of probe biodistribution further demonstrated increased probe accumulation in irradiated tumors. CONCLUSION: HQ4-DTPA has high specificity for dead cells in vivo, potentiating its use as a contrast agent for determining the relative level of tumor cell death following radiation therapy using NIRF, photoacoustic imaging and SPECT in vivo. Initial preclinical results are promising and indicate the need for further evaluation in larger cohorts. If successful, such studies may help develop a new multimodal method for non-invasive and dynamic deep tissue imaging of treatment-induced cell death to quantitatively assess therapeutic response in patients.

7.
J Vis Exp ; (113)2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27500928

RESUMO

Bone marrow is a complex organ that contains various hematopoietic and non-hematopoietic cells. These cells are involved in many biological processes, including hematopoiesis, immune regulation and tumor regulation. Commonly used methods for understanding cellular actions in the bone marrow, such as histology and blood counts, provide static information rather than capturing the dynamic action of multiple cellular components in vivo. To complement the standard methods, a window chamber (WC)-based model was developed to enable serial in vivo imaging of cells and structures in the murine bone marrow. This protocol describes a surgical procedure for installing the WC in the femur, in order to facilitate long-term optical access to the femoral bone marrow. In particular, to demonstrate its experimental utility, this WC approach was used to image and track neutrophils within the vascular network of the femur, thereby providing a novel method to visualize and quantify immune cell trafficking and regulation in the bone marrow. This method can be applied to study various biological processes in the murine bone marrow, such as hematopoiesis, stem cell transplantation, and immune responses in pathological conditions, including cancer.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/diagnóstico por imagem , Rastreamento de Células , Fêmur/cirurgia , Hematopoese , Animais , Células-Tronco Hematopoéticas , Camundongos , Camundongos Nus
8.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25430722

RESUMO

Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2)-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3) and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low-HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias da Mama/diagnóstico , Fluoresceínas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Imagem Multimodal , Imagem Óptica/métodos , Trastuzumab , Regulação para Cima
9.
PLoS One ; 7(8): e42133, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927920

RESUMO

Radiotherapy is a widely used cancer treatment. However, understanding how ionizing radiation affects tumor cells and their vasculature, particularly at cellular, subcellular, genetic, and protein levels, has been limited by an inability to visualize the response of these interdependent components within solid tumors over time and in vivo. Here we describe a new preclinical experimental platform combining intravital multimodal optical microscopy for cellular-level longitudinal imaging, a small animal x-ray microirradiator for reproducible spatially-localized millimeter-scale irradiations, and laser-capture microdissection of ex vivo tissues for transcriptomic profiling. Using this platform, we have developed new methods that exploit the power of optically-enabled microscopic imaging techniques to reveal the important role of the tumor microvasculature in radiation response of tumors. Furthermore, we demonstrate the potential of this preclinical platform to study quantitatively--with cellular and sub-cellular details--the spatio-temporal dynamics of the biological response of solid tumors to ionizing radiation in vivo.


Assuntos
Microvasos/efeitos da radiação , Imagem Óptica/métodos , Radiobiologia/métodos , Neoplasias do Colo do Útero/irrigação sanguínea , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microvasos/metabolismo , Microvasos/fisiopatologia , Neovascularização Patológica , Imagem Óptica/instrumentação , Radiobiologia/instrumentação , Trombose/complicações , Fatores de Tempo , Tomografia de Coerência Óptica , Transcriptoma/efeitos da radiação , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA